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1. Iniroduction

A number of important processes in chemistry, electronic
sciences, or solid state physics, to name only some sub-
jects, is based on the event that the system escapes a
former filled stable state and crossover into another stable
state, for instance in a trigger switching from the state 0
to the state 1.

From a physical point of view we have seme questions
about this system, e.g. how long does it remains at the
stable state, how long does it takes to leave the former
stable state and arrive to the next stable state, what is
the way for that transition and so on. It has been
shown that the answers generally depend on the stabi-
lity of the several states /1, 2/, therefore we have the pro-
blem to know the potential of the system what determines
the stability essentially.

We consider in the following a system with two relative
stable states which are separated by an energy barrier.
The state characterising the initial situation, is assumed
to be metastable, that‘'s why it will be leaved with a
certain probability /2/.

A concrete example of a bistable system is a supersatu-
rated vapor. The initial metastable phase is then given
by the supersaturated vapour phase only, but in the stable
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Fig. 1

Free energy of the formation of the droplet vs.

droplet radius r (infinite system)

Au — difference between the chemical potentials of
the vapor and the liquid phase

Yor— critical droplet size
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state a coexistence of the liquid phase and the saturated
vapour is found.

The transition from the metastable to the final stable
state corresponds to a phase transition, given in this case
by an condensation process. This condensation process can
be well described by the model of nucleation. Generally the
classical nucleation theory is known. There the nucleus
or cluster is described as a droplet with an incompressible
density and a constant surface tension. The free energy
for the formation of the droplet is presented in Fig. 1.

The maximum of the energy corresponds to a critical
droplet size, which the droplet has to reach at least to
grow further. This maximum depends on the supersatu-
ration of the vapour and characterizes the nucleation bar-
rier what has to crossover during the phase transition.
The classical concept of nucleation is only valid for infi-
nite systems where the pressure is constant. For a finite
system with a constant volume and a constant overall
particle number we find two extrema of the free energy
determined by the thermodynamic contraints.

Except from the critical droplet state, given by the energy
maximum, a stable state of the droplet exists, corres-
ponding to a minimum of the energy. Such a model has
been widely analyzed in recent time, for details, e.g.
discussions of stability and equilibrium conditions, see /4—
7/ and references therein.

It was pointed out that a maximum of the energy is hold
only for a droplet description with one variable, e. g. its
particle number or its volume, presuming the incompres-
sibility of the droplet. A more detailed description of the
droplet by two variables leads to a thermodynamic saddle
point instead of a maximum of the energy. Both thermo-
dynamic equilibrium states, the saddle point and the mi-
nimum, are shown in Fig. 2 for one droplet characterized
by two variables.

In this paper we further consider a model what describes
the cluster only with one variable, that‘s the number of
particles bound in the cluster. Instead of a single cluster
we suppose a cluster distribution, which the thermodyna-
mic potential is investigated for. We expect for this poten-
tial in dependence on the distribution regions of lower
energy corresponding to relative stable states and a re-
gion of higher energy what separates this stable regions
and can be interpreted as a barrier for the phase transi-
tion.

An analysis of the potential for some special cases is fol-
lowed by conclusions for the probable course of the phase
transition for the given model. We show that this model
has the for bistable systems typical properties and discuss
them in terms of the cluster distribution.
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Fig.2 (a + b)
Shape of the free energy vs. two coordinates of the
cluster /3/

The saddle point (a) and the minimum (b) charac-
terize the two equilibrium states (instable and stable
state) of the single cluster in the finite system.

2. The free energy of an ideal mixture of clusters and
free particles

We consider a closed and finite system with N free par-

ticles and fix the thermodynamic constraints

N =const,, V=const., T = const, (2.1)

in such a way that the pressure of the supposed ideal
vapour

N
= —kgT (2.2)
v B

is larger than the equilibrium p,, (T) for the saturated
vapour at a planar liguid interface.

Due to interactions between the particles a nucleation
process can occur in the system, that means, the particles
will bound in clusters, and a configuration of free particles
(monomers), dimers (bound states of two particles), tri-
mers ... is developed.

This configuration will be described by /8, 9/

N={N1N2N3-'-Nn—-1NnNn+l-'-NN} 2.3)

N, is the number of clusters with n bound particles.
Because of the conservation of the overall particle number
(2.1) the relation holds:

N
N= Z nNy, = const, (2.4)
- n=1

For the maximum number of clusters with n particles it
follows:

OSan—l;l, n=1,...,N (2.5
The configuration N can be interpreted as a discrete
cluster distribution. The time evolution of this distri-
bution from the supposed initial state of the N free par-
ticles to the stable state we former investigated by com-
puter simulation techniques /9/.

Here we note only that first in a quasistationary time
scale a distribuation of some small (undercritical) clusters
is developed what is related to the metastable state of the
system. The escape of this metastable state is an intrinsic
stochastic process which ‘is characterized by overwhelm-
ing an activation barrier. After the crossover the relaxa-
tion to the stable state of the system in a stationary time
scale can bhe described by a deterministic equation (see

/9, 10, 12/ and references therein),

In this paper we are interested in the shape of the ther-
modynamic potential to discuss the extremum states for the
given discrete cluster distribution.

Assuming that the cluster and the free particles are an
ideal mixture we dedived in former investigations the
free energy of the configuration (2.3) as:

N N .
N)=2Nn {fn+l(r3T(ln"V1“l?1‘—l)} (2,6)

n=1

F(T,V,N;,N,... N

For a detailed explanation of the given formula see
originally ref. /8, 9/.

F (T, V, N) (2,6) includes the confribution of the pressure
p and the Gibbs potential G of the cluster distribution:
F=G-pV.

The pressure

N v
dF _ kgT
p=— o= 2N, @7

results from the partial pressures of the different kinds
of clusters and the monomers.
The Gibbs potential is given by

- N
G= Zl“nNn
n=1

where
Npn .3
Bn= fn+ kBT In —‘7' ln (2.8)

is the chemical potential per cluster of size n. It consists
of a potential term f, discussed in the following and the
contribution of the mixing entropy as the second term.
4, is the De Broglie wave length of a cluster with size n.
F, is related to the binding energy of the cluster. In a
first approximation we choose the following ansatz with
respect to the theory of atomic nuclei: /8, 9/

f,=— An+ Bn?? (2.9)

The term A, corresponds to the binding energy of the
particles inside the cluster. The constant A can be calcu-
lated from the molar evaporation heat. Another, but quite
equal estimation what is more convenient for analytical
results is given in /11/ and leads to:
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— D= 3 2.10
A= —JgTIn 2] 210)

The term B3 considers the surface energy of the cluster.
We obtain for the constant B:
P —2j3
)

4
B = 4x0 @.11
a0 < 3 )

with ¢ being the surface tension and c, being the par-
ticle density of an incompressible macroscopic liquid
phase.

We note that the specific properties of the clusters are
described similar to the droplet model of classical nucle-
ation theory. The ansatz (2.9) for f, is satisfied only for
large clusters. For small clusters where interactions bet-
ween all particles inside the cluster are yet possible we
need another form of £, /9/:

. A
f, = o N (n—1) (2.12)

Thus it holds particulary:
f; = 0; f= — A (two-particle binding energy)

In the following we use consequently the form (2.9) for £,

(n=2, ..., N) and f; = 0, keeping in mind a certain ine-
quality in the description of small clusters.

3. Discussion of the free energy

Now we investigate in a numerical analysis the free energy
of the system in dependence on the cluster distribution.
First we introduce a constant Fyy4

Fiq= NkgpT {m%sz 1} = const. ER)!

what 1'épresents the free energy of a system with the
constraints (2.1), but N non-interacting free particles 19/
Calculating the value .

AF=F(T,V,N;N,...Ny) = Fy4(T,V,N) ¢.2)
with the restrictive condition
' N
N1=N--Z;nNn (.3)
h=

following from the conversiofl of the overall particle num-
ber we receive for (3.2) with (2.9) and (2.10):

AP N.lkBT
= = —_ F
T (N—Ny)+Nln v J L
N
By
+kBTn§;n Ny }Fz
(3.4)
N ,. N
+2Nn{ln—‘—;—l,31—l} JFa
.)jl.=2 L L
NkgT
—Nlin
PwV }F-f

In the formula (3.4) we distinguish four parts Fy, Iy, Fs, Fy;
the last, F,, being a constant what further is ignored. Fy,
F,, Fyrepresent the change of the free energy of the system
caused by the establishment of the cluster distribution.
T, condiders the change of the monomer phase because
the number of free particles diminishes due to the for-
mation of clusters. h

F, stands for the surface energy of the cluster distribu-
tion. Fy corresponds to the mixing entropy and the partial
pressure of the clusters.
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Tab.1:
Free energy (3.4) of the cluster distribution for a constant
n

number of clusters Z N,=6

n==2

cluster AF/kgT F,/kpT Fy/kpT F3/kgT
distribution

26 106,59 — 23,68 50,66 -133,58

48 —105,71 — 46,32 80,43 —139,82

223‘14151‘61 —115,76 — 42,62 74,48 —147,61

108122315171 —141,18 —1172,02 183,62 —152,79
Tab. 2a

Free energy (3.4) of the cluster distribution for a constant
number k of bound particles

a) k=10 b) k=108
cluster AF/kgT F,/kgT Fy/knT Fy/kpT
distribution
52 —38,17 -19,81 31,11 — 49,47
25 —89,81 —19,81 42,44 —112,23
10t —21,58 —19,81 24,69 — 26,46
21315t —58,89 -19,81 35,06 - 74,14
Tab. 2b
cluster AF/kBT Fl/kBT Fz/kBT F3/kBT
distribution
542 —67,67 —163,07 152,01 —56,01
8012018! —87,05 —163,07 159,02 —83,23
108! ~72,46 —163,07 120,65 —30,03
10612 —89,53 ~163,07 127,60 —54,06

If we would neglect Fy in our theory and assume further
that the clusters are all indentical, a close connection to
the results of a former thermodynamic analysis is obtained
/5, 6/.

The different parts of 4 F are represented in Tab. 1, 2a, b
for various cluster distributions, These distributions are
choosen in such a way, that in Tab.1 the whole number

N
of clustersZNn is constant, but in Tab. 2a, b the whole

n==2
N

number of bound particles 2 n N, ist constant.

n==2
The numerical results are received for a system of etha-
nol vapour with the thermodynamic constraints:
N =150, V= 2,0 » 10-2m3, T= 290 K
In this case we have A/kg T =19.08 and B/k g T = 5.32.
To simplify the notation of the cluster distribution we
use an abbreviation; the number of clusters of size n is
written as an exponent. e. g. 2° 31 108! means that we have
three clusters of size two, one of size three and one clus-
ter of size 108 in the system. The number of free particles
is given by (3.3). Tab. 1 demonstrates that the mixing
entropy for different specieses of clusters has a greater
value than those for the same number of indentical clus-
ters. The contribution of the parts F; and F, became ap-
parent only in the case of clusters with great sizes, natu-
rally. In this case the surface energy has an important
amount but AF has a greater negative values because the
influence of Fy on AF increases.
Tab. 2a, b shows additionally that Fy depends only from
the whole number- of bound particles and that the mixing
entropy is mainly determined by the number of clusters
instead nf their sizes.
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Free energy of the formation of the cluster vs.
cluster radius r (finite system)

r,. — critical cluster size

Iy — stable cluster size

The dashed line gives the formation energy of the
infinite system.

4. Extrema of the free energy

4L Analytical results

In the nucleation theory the extremum values of the po-
tential require the main interest, because they define the
equilibrium states, their location and stability.

A simple case is obtained for a system, which contains
only one cluster in a bath of free particles. The thermody-
namic potential in this case is schematically shown in
Fig. 3. We have a maximum of AF corresponding to the
instable state which represents the nucleation barrier,
and, additionally, a minimum for large clusters in the
system. The equilibrium condition in this case is given
by the well known Kelvin equation /5, 11/:

1

ln—p—(r—)r—.—do;

Po

(CR)]

r is the radius of the cluster, dy the capillary length, p..
the saturation pressure above a planar surface and p(r)
the equilibrium pressure above the curvated surface of the
cluster. In infinite system we get only one solution of (4.1)
with respect to the critcal radius (see Fig. 1 or 3), but in
finite systems two solutions are held, corresponding to the
critical and the stable radius of the cluster. For further dis-
cussions see ref. /5,11/. For a model considered in this
paper we generally receive the extrema of the free energy
(2.6) from the condition:

#F(T,V,N;... Ny)
N,

={ (11:2:-‘-:N) (4.2)
with the restrictive condition (3.3). With (2.6) and (2.9) we
get from (4.2) the equilibrium cluster distribution /8, 9/:

N kgT
ikgl B n2/3}

'va:—%exp nln o
kBT

A PV
where N ist the number of clusters of size n for the equi-
librium state. With the expression for thé chemical poten-
tial (2.8) and (2.9) the equilibrium condition is held in the
known form of a mass action law

(4.3)

pa=na  (n=2,...,N)

The eqs. (4.3) or (4.4) mean a system of N-1 equations
which are to be solved simultanously with respect (o
(3.3). It leads to a continuous distribution for the N,°

(4.4)

But in the considered model we are more interested in a
discrete equilibrium distribution for the N % That’s a quite
complicated problem. Mathematically ¥ (T, V, Ny Ny...
Ny) is a hyperplane in the space of the different kinds of
clusters.

To get some information about the extrema of the iree
energy we investigate originally AF (3.4). We use a com-
puter programm for a KC 85/2 (see /13/), what realizes a
discrete search of the extremum values, The different
cluster distributions are generated by hand, that means
a purposeful search, instead of an automatic generation
of the distributions which ist more extensive in time,
because most of the distributions generated in this way
are not of interest.

The presentation of the free energy is given for two spe-
cial cases corresponding to two cuts of the hyperplane
of AF. We discuss the extrema of the free energy either
for a constant number of clusters or for a constant num-
ber of bound particles in the clusters.

Our starting point for searching for the extrema are the
extremum values of F in the case of only one cluster in

the system, that meansz:1 N, =1
n=%

4.2. Extrema for identical clusters

TFirst we want to discuss the extremum values of AF for
a constant number of clusters in the system. The results
are demonstrated in Tab. 3 and Fig. 4.

Tab. 3:

Maximum values of the free energy (3.4) for a constant
number of clusters. The related cluster distribution for the
extremum value is given with an abbreviation, explained
in chapter 3. .

number of maximum of the related cluster
clusters free energy (kgT) distribution

1 — 19,61 3

2 — 37,77 32

3 — 55,35 3%

4 — 72,53 34

5 — 89,30 45

6 —105,77 48

AF

=z
=

Fig. 4

Free energy of the formation of identical clusters n is the
number of bound particles in the cluster, N is the number
of clusters. The presentation considers the mixing entropy.

P is the inflexion point hold for vanishing extrema at a
critical number of clusters. The dashed line connects the
minima, the dashed-dotted line the maxima of AF for dif-
ferent Nn
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Tor the given thermodynamic constraints the maximum
of AF for one cluster is held for a cluster size of three
particles. With an increasing number of clusters the free
energy becomes more negative, as discussed before. But
a maximum of AF for a constant number of clusters is
obtained only for identical clusters. For distributions
with clusters of different sizes smaller values of AF are
found caused mainly by the influence of the mixing
entropy. .

To discuss further the extrema for a constant number
of identical clusters we note that a true maximum of the
free energy (extremum) is found only up to six clusters
tor N = 150 particles (see Tab.3). For seven or more
clusters we obtain no true extremum in this case. The
tree energy then is a monoton increasing function of the
cluster size.

In Fig. 4 the results are schematically represented for
identical clusters. We also find a minimum of AF what is
characteristic for the finite system only up to a certain
number of clusters. Instead of true extrema, at a critical
number of identical clusters only an inflexion point of
the free energy exists. Starting with this point P we ob-
serve the known “valley of the free enérgy” consisting of
the minima of the free energy for a decreasing number
of identical clusters (dashed line in Fig. 4).

The results for a constant number of identical clusters
are in complete comparison with those of the thermo-
dynamic investigations /5, 6/ except for the fact that due
to the mixing entropy a decrease of the maxima of AF
(dashed-dotted line in Fig. 4) is obtained for an increasing
number of clusters.

4.3. Extrema for cluster distributions
For a deeper inside into the shape of the potential plane
of AF we now discuss the case that the number k of

N
bound particles in clusters k== ZnNn is constant for
n=2
different cluster distributions. The free energy of those
distributions is demonstrated in a schematic plot (Fig.5)
explained as follows: On the left the distributions with
small clusters are located. The left border line is given
by distributions with dimers only. On the right we have
distributions with small and large clusters. The sepa-

distribufions with
small and large
cluster

with small
cluster

1
1
]
distribution 1
1
|
|

maximum cluster
size k2

sectarJL

Fig. 5

Sketch of the presentation of the potential AF and the related
cluster distributions for a constant number k of bound particles
(explanation in the text).

Sector I and sector IT are represented with numerical data.

ration between the left and the right is given by a maxi-
mum cluster size of k/2.

The case of only one cluster (n = 2) in the system as the
limit of a cluster distribution is located on the tolal
right.

With numerical date we represent only two sectors of
this schema, one near the critical state (I) /Tab.4, the
other near the stable state oft the single cluster (II)/
Tab. 5. ‘

Sector I shows two limit cases. For the single cluster the
{ree energy, has the greatest values because the mixing
entropy is very small, but the lowest values of the free
energy are hold for distributions with dimers only, the
mixing entropy then has the greatest part and the sur-
face energy is very small. We remark that the distinction
of the dimer distribution is a consequence of the given
model neglecting interactions between the clusters.
Between the two limit cases the other possible distribu-
tions of clusters are presented for a given value of k.
The change from distributions with small clusters to those
of large clusters is marked by distributions with a maxi-
mum cluster size of k/2. Among these such distributions
are designated what contains of two nearly indentical
clusters because the free energy then attains its maximum
value for a given value of k (except for the single clus-
ter).

Tab. 4: .
Free energy of the cluster distributions (section I of Fig. 5) for a given numberk of bound particles.
k
2 2t
(—19,62)
3 31
(~19,61)
4 22 4!
(—37,84) : (—19,69)
5 : | i3t : 5t
L (—39,15) : (—19,86)
G 93 ©oga Coodgl 6!
(—55,50) L (~37,77) | (—39,26) (—20,10)
7 233! | 3lgt L ol 7!
(—57,37) D (—39,22) (—39,52) (—20,40)

8 26 2132 2241 42 © 3i5! 216! 8t

(—172,79) (—57,32) (—57,42) {(—37,89) | (—39,37) (—39,64) (—20,75)
9... 2% 3 913141 PELY L 3lgt 207! gt

(—74,99) (—55,35) (—58,75) ©(—39,42) | (—39,59) (—39,93)............ (—21,15)
16... 24 3241 2141 21315t | 52 Ty 317! 21gt

(—75,03) (--57,30) (—b7,41) (—58,89) | (—38,17) | (—39,63) (—39,87) (~40.27)............
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Tab. 5:

Free energy of the cluster distributions (section II of Fig.5) for a given number

k of bound particles.

k
106 106!
(—172,39)
107 411031 31104f  2l105! 107!
(—817,08) (—88,24) (—89,52) (—72,44)
108 221041 411041 3105t 21106t 108!
(—105,239)  (—87,09) (—86,26) (—~89,53) (—72,463)
109 22105! 411051 3i106! 2l107t 109t
(—105,230) (—87,08) (—88,25) (—89,53) (—172,463)
110 221061 411061 34107! 21108t 110t
(—105,19) (—87,05) (—88,22) (—89,50) (=-72,44)
111 2%107! 411071 3l108! 21109t 111t
(~105,14) (—87,00) (—88,17) (—89,45) (—72,39)
112 221081 411081 3'109t 21110! 1121
(—105,06) (—86,92) (—88,10) - (~B89,38) (—72,32)

These distributions characterize, for this particular pre-
sentation, an energy barrier what has to crossover when
a transition from distributions of small clusters to those
with large clusters occurs.

Let uns discuss this fact in more detail and therefore re-
member the mechanism of the phase transition by nuclea-
tion. We choose the following kinetic ansatz:
Cn+C = Chyy (4.5)
It means a cluster of size n grows up only by an attach-
ment of a free particle. Interactions between clusters of
different sizes are excluded.
If we consider an initial state of N free particles, then in
the first step a dimer is created due to the reaction (4.5).
During the next step this dimer is able fo tend to be a
irimer or splits into two monomers again, or a second di-
mer will be created. Caused by the stochastic nature the
selection of one these reactions is determined by a ran-
dom process. After every realization new possibilities
for the dynamic process of phase transition arise due to
the reaction (4.5) (see sector I) (Tab. 4).
But from an energetic point of view such reactions are
prefered which lead to a decrease of the energy of the
system. This means the system will relax from the initial
state first to such states what are presented on the left
hand in section I. The case that only a single cluster is
created in the system growing further is on principle not
so probable than the establisment of a certain number of
small clusters, because the free energy in this case is
more decreased. Distributions of only dimers in the given
model are energetically more favourable indeed, but the
{luctuations in the system prevent it.
It is notable that for different distributions of small
clusters only small energy differences exist that’s why
transitions between these distributions are possible.
The phase transition in the system is now characterized
by the establishment of a large cluster inside the me-
tastable vapour phase consisting of small clusters and
free particles only. This cluster grows further until a
coexistence of the liguid phase with the surrounding va-
pour is hold in the final state. )
To built up such large clusters (n > k/2) in the system of
course the energy barrier in the middle region has 1o
crossover. This process cannot be described in a determi-

nistic model but only in a stochastic model considering the
influence of fluctuations in the system /9, 10, 12/.

The phase transition in this model is interpreted as an
stochastic tunnel process through unprobable (that means
energetically unfavourable) states.

After the crossover the large cluster has an overcritical
size and grows up to its final stable state. In sector II
(Tab.5) we represent some distributions of large and
small clusters for k == const. near the stable state of the
single cluster (n = 108).

In agreement with former discussions of the free energy it
is to be seen that the stable state in fact is given by a
distribution of small clusters and free particles with one
large cluster, instead of a single large cluster, because of
the more decreasing energy. This fact confirmes with re-
sults of a stochastic simulation of the nucleation process
for the given model /9/.

5. Conclusiong

In the present paper we investigate the thermodynamic
potential of a system where a discrete distribution of
clusters of different kinds and free particles exists. Be-
cause of the complicated structure of the potential the
analysis is obtained only for some special cases corres-
ponding to certain cuts of the hyperplane of this poten-
tial. The results show the properties of the potential in
agreement with those expecting for typical bistable
systems.

We find for the considered cuts of the hyperplane a po-
tential barrier consisting of the maxima of the free energy.
This energy barrier separate two regions with lower
energy given by states of a larger stability. In .the dis-
cussed model the metastable state is hold for distribu-
tions with small clusters, on the other side of the barrier
the stable state is characterized by distributions with
small and large clusters. A phase transition only ocecurs
if the metastable state will be escaped by crossover the
potential barrier.

For the relative stable states a multitude of different
distributions is possible, but the energy of the distribu-
tions for a given stable state differs only slightly. That’s
why transitions between similar distribution are quite
possible. But for the transition between the metastable
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and the stable state a rather large energy barrier must
be crossed over. '

Finally we remark that some slight uncertainities, e. g
the energetically favourable state of distributions with
dimers only, are involved by the character of the given
model, The term f; was not exact considered, moreover
all interactions between the clusters are neglected.

Zusammenfassung

In der Arbeit wird die freie Energie einer idealen Mi-
schung von Clustern' und freien Teilchen untersucht.
Dieses thermodynamische Potential bildet die Grundlage
~ fiir die Beschreibung von Keimbildungsprozessen in fi-
niten Systemen. Die verschiedenen Anteile der freien
Energie werden in Abhingigkeit von der Clustervertei-
lung berechnet und diskutiert.

Nach allgemeinen Ausfithrungen tiiber die Extrema des
thermodynamischen Potentials werden die Bereiche extre-
maler Energie fiir Spezialfiille berechnet und diskutiert.
Diese Spezialfille entsprechen zwei Schnitten durch die
Hyperfliche des Potentials. Es wird deutlich gezeigt, dal
die freie Energie des Systems Eigenschaften eines bista-
bilen Potentials besitzt. In Abhingigkeit von der Cluster-
verteilung werden Bereiche kleiner Energie gefunden, die
dem metastabilen bzw. dem stabilen Zustand des Systems
entsprechen, Diese Bereiche sind durch eine Energiebar-
riere getrennt. Der Phaseniibergang durch Keimbildung
wird als Durchtunnelung dieser Energiebarriere erklért.

Pesiome
B cTarne OMUCAHBL MCCefoBaHns cBoOOAHOM SHEPrMu Micalib-

HOJI CMECH COCTOMILEH M3 CryCTKOB U CBOOOJHBIX 4YaCTHIL -

DTOT TEPMOAMHAMMUECKUI DOTEHIMAN OOPA3OBHIBACT OCHOBY
YIS ONMCAHMA IPOIECCOB 0GPA30BAHMA DOCTKOB B (DMHMTHAIX
encremMax. PasimuHple yacTy cBOGOJHOM 3HEPIUM PACCUMTAHbL
B 32BHCMMOCTM OT DACIPENEICHHI CrYCTKOB ¥ OBCYXKAGHLI B
CTaThE.

Co00pasHo ¢ OOIMMH M3JIOKERMAMM O SKCTPEMAX TCPMO-
JMHAMMYECKOrO TMOTCHHMANa ONPEAENEHbl 1M OGCYIKNEHD
AMANO30HE JKCTPEMANBHON OSHEPTMM JAS CHEIMANBHBIX CHY-
uges, DTU CICHUANBHBIE CIyYau COOTBETCTBYIOT JABYM IIpO-
pe3amM uepe3 THIEPIOBEPXHOCTD MOTEHIHANA. B CTAThe 0TyeT-
JIMBO LOKA3aHO, YTO CBOGONHAS SHEPris cucTems! obmafact
CBOJICTBAMY OMCTAGMABHOrO NOTEHIMANA. B 3aBUCHMOCTA OT
CrYCTKOB HAMJEHE! JMANO30HBl MAJOi 3IHEPIMH, KOTODLIE
COOTBETCTBYIO METACTAGMIBHOMY WM CTa0MIBHOMY COCTOS-
HIMIO CHCTEMBL DT AMANO30HLI PAa3feNeHbl Gapbepen SHEPrun
da30BHIl NEPEXOJ MyTeM 00pa30BaHMs POCTKOB OCBACHACTCA
KAK IpopsiB 3T0ro Oapbepa SHEPTHMM.
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But the meaning result, that's the confirmation of the
bistable character of the given model, therefore is not
restricted in any sense.
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Summary

The contribution deals with the free energy in an ideal
mixture of nuclei and free particles. This thermodynamic
potential forms the basis for a description of the nuclea-
tion process in finite systems. The different fractions of
the free energy are calculated from the nucleus distri-
butions and discussed. T

After a general discussion regarding the exireme values
of thermodynamic potentials, the regions of extreme
energies are calculated and discussed for special cases
corresponding to two cross sections through the hyper-
surface of the potential. It is shown clearly that the free
energy of the system possesses properties of a bistable
potential. Regions of lower energy are found, depending
on the nucleus distribution, which correspond to the
metastable and stable states of the system respectively.
These regions are separated by an energy barrier., The

" phase, transition by nucleation is discussed in terms of a

tunneling through this barrier.

Résumé

L’article a pour objet Uétude de Iénergie libre d’un
mélange idéal d’essaims et de particules libres. Ce poten-
tiel thermodynamique est la base de la description des
processus de germination caractérisant les systémes finis.
Le caleul et la discussion des différentes parts de I'énergie
libre se font suivant la répartition des essaims.

Apreés des considérations de caractére général sur les
valeurs extrémes du potentiel thermodynamigue, les
auteurs calculent et discutent les domaines d’énergie
extrémale dans des cas spéciaux qui répondent & deux
coupes par Phypersurface du potentiel, Ils metient en
&vidence que 'énergie libre du systéme présente des pro-
priétés d’un potentiel bistable. En fonction de la réparti-
tion des essaims, ils découvrent des domaines de faible
énergie répondant & 'état métastable ou stable du gsystéme.
Les domaines sont séparés l'un de I'autre par une barriére
énergétique. La transition de phase par germination est
expliquée par Yintermédiaire de tunnels passant par la
barriére énergétique.
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